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The reliability of RNA secondary structure predictions is subject to the accuracy of the underly-
ing free energy model. mfold and other RNA folding algorithms are based on the Turner model,
whose weakest part is its formulation of loop free energies, particularly for multibranch loops. RNA
loops contain single-strand and helix-crossing segments, so we develop an enhanced two-length freely
jointed chain theory and revise it for self-avoidance. Our resulting universal formula for RNA loop
entropy has fewer parameters than the Turner/mfold model, and yet simulations show that the
standard errors for multibranch loop free energies are reduced by an order of magnitude. We further
note that coaxial stacking decreases the effective length of multibranch loops and provides, surpris-
ingly, an entropic stabilization of the ordered configuration in addition to the enthalpic contribution
of helix stacking. Our formula is in good agreement with measured hairpin free energies. We find
that it also improves the accuracy of folding predictions.

I. INTRODUCTION

Accurate prediction of macromolecular structure from
primary sequence is one of the grand challenges of com-
putational biology. The secondary structure of RNA, de-
fined by a set of canonical GC, AU, or GU base-pair
interactions of the cis WatsonCrick/WatsonCrick-type
[17], contributes the great majority of the total free en-
ergy. Tertiary interactions such as non-local hydrogen
bonds, divalent-counterion stabilization, or helix stack-
ing account for the remainder.

The Turner rules [21, 26] are the basis for many
RNA secondary structure prediction algorithms includ-
ing mfold [29], ViennaRNA [14], Sfold [10], and others.
RNAstructure [19] has systematically incorporated revi-
sions to the rules [9, 16, 20, 22, 25]. The Turner rules are
based largely on physical-chemical measurements, with
tabulated free energies for base pair stacks, and hairpin
and interior loops.

Loop free energies are the most uncertain part of the
Turner model, with large statistical errors for hairpin
loops, and systematic errors in the model of multibranch
loops. The authors of mfold confess [30], “Because so
little is known about the effects of multi-branch loops on
RNA stability, we assign free energies in a way that makes
the computations easy.” The mfold algorithm assumes
a linear dependence of multibranch loop free energy on
loop dimensions [31]. Several statistical-mechanical ap-
proaches [8, 28] have since rejected this unphysical, al-
beit computationally efficient, treatment of multibranch
loops.

The entropy of RNA loops have been computed re-
cently by enumerating backbone configurations to sim-
ulate loop regions [7, 27] based on a virtual bond rep-
resentation of the backbone [23, 24]. These studies give
fairly accurate numerical representations of the entropies
of different loops, but their extrapolation formulas do not
provide the physical insight that our theoretical frame-
work can provide.

In this paper, we describe RNA loops in terms of a two-

length scale polymer physics model with single-strand
and helix-crossing segments. We derive the self-avoiding
loop-closure free energy for this model, arriving at a sim-
ple functional form which greatly reduces the number of
parameters which appear in the Turner model or enu-
merative simulations. The standard errors for multi-
branch loops are ten times smaller for our model than
for mfold’s when compared to simulations. Our for-
mula also neatly passes through the large experimental
error bars for hairpin free energies.

We also introduce the surprising physical insight that
the coaxial stacking of adjacent helical segments pro-
vides an entropic free-energy benefit, in addition to
the energetic stabilization currently incorporated in sec-
ondary structure prediction algorithms [19]. This situ-
ation marks a rare exception to the classic tradeoff be-
tween energy and entropy. This novel phenomenon may
have widespread implications in determining the stability
of RNA structures. Finally, in addition to simplifying the
Turner model, we will show that our formula increases
the accuracy of mfold predictions.

II. METHODS

A. Polymer Theory

One key observation is that RNA loops have two length
scales: a = 6.2 Å for monomer separation in single-
strand regions, and b = 15 Å to cross a helix [1]. The
properties of such a polymer can be understood by ex-
tending the freely-jointed chain (FJC) model from one
up to two step lengths. In our FJC2, each segment has
length ri ∈ {a, b}. Randomly distributed unit vectors
obey 〈n̂i〉 = 0, 〈n̂i · n̂j〉 = 0 for i 6= j, and 〈n̂i · n̂i〉 = 1.
The total end-to-end separation is R =

∑
i rin̂i. If there

are N links of length a and M links of length b,

〈R2〉 =
∑
i,j

rirj〈n̂i · n̂j〉 =
∑

i

r2
i = Na2 + Mb2; (1)
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this defines the characteristic spatial extent of the chain.
If there is only one segment length type, Eq. (1) reduces
to the familiar FJC result [13].

Loops are formed when the polymer walk returns near
to its starting point. If we use a characteristic volume ∆V
to define “near” the origin, the loop probability scales like

pnear ∼ ∆V/〈R2〉3/2 ∼ (Na2 + Mb2)−3/2.

For self-avoiding polymers, the classic Flory result [13]
is that the chain extension scales with a larger power,
〈R2〉Flory ∼ a2N6/5. The self-avoiding FJC2 analogy is

〈R2〉sa = N6/5a2 + M6/5b2.

The probability of end-to-end separation for a self-
avoiding polymer adopts an asymptotic scaling form [13]:

psa(x) ∼ x5/18〈R2〉−3/2
sa ,

when the dimensionless chain extension x =
[R2/〈R2〉sa]1/2 is small. To form a loop,
x ∼ ∆V 1/3/〈R2〉1/2

sa is small, and after combining
1
2

5
18 and 3

2 exponents,

pnear,sa ∼ 〈R2〉−59/36
sa ∼ e−GFJC2/kT .

Thus, the FJC2 loop-closure free energy is

GFJC2(N, M) = 59
36kT ln(N6/5a2 + M6/5b2) + C, (2)

with C reflecting the possibility of a different criterion
for being near.

Sequence dependencies of loops are largely ignored in
the Turner rules [20, 21]; exceptions include stacking
bonuses of the bases adjacent to a helix, a list of sta-
ble tetraloops (hairpin lops with n = 4 bases), and inte-
rior loops with up to 2 × 3 mismatched bases — we in-
clude these sequence dependences identically to mfold
in our testing. Implicit in neglecting sequence depen-
dences is the approximation that the entropy of config-
urations dominates the free energy, particularly for long
loops. This “athermal” approximation of ignoring en-
thalpic effects is explicit in enumerations of chain config-
urations [7, 27] and in our derivation of loop free energies.

B. Coaxial stacking

Although coaxial stacking refers to the tertiary organi-
zation of secondary structure elements, it is included in
secondary structure folding algorithms [19, 21, 29]. If no
bases intervene between two helices, they may adopt a
coaxially-stacked orientation; a free energy change equal
to making a conventional basepair stack is assigned in
mfold for coaxially stacked helices [21]. If there is an
unpaired base between the helices, mfold essentially re-
cruits a base from the loop to make an intervening mis-
match [16, 25]. Figure 1 shows examples of each type —
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FIG. 1: The secondary structure of tRNA includes four base-
paired stems meeting at a central multibranch loop. In the
multibranch loop and hairpin loops, the effective backbone is
comprised of a combination of N single-strand links of length
a and M helix-crossing segments of length b. Coaxial stacking
orients helices, reducing the effective multibranch loop size.

the acceptor stem and TΨCG helix stack coaxially, while
the anticodon and D stems are separated by one base.

An important fact which has not been noticed is the
effect of orienting the helices on the remainder of the
multibranch loop. Basically two of the long b segments
are removed from the effective loop in the ordered config-
uration. Since the free energy cost to make a loop is less
for a shorter chain, the stacked configuration is not only
the low enthalpy state, it is also the more stable state of
the loop.

To get a sense of the magnitude of this surprising loop
entropy stabilization, consider a typical tRNA (see Fig-
ure 1) with an (N = 12, M = 4) multibranch loop. After
coaxial stacking of TΨCG loop and the Acceptor stem,
and orienting the stems leading to the D and anticodon
loops, Meff = 0. The free energy benefit is

GFJC2(11, 0)−GFJC2(12, 4) ≈ −1.0 kcal/mol. (3)

Our Meff benefit comes in addition to the conven-
tional stacking free energy (which we treat identically to
mfold’s efn2); its origin is the entropic benefit of short-
ening a loop. It is known from rubber elasticity that
there are more chain configurations when the two ends
are near. Stacking reduces the separation of dashed and
dotted lines in Figure 1, so the stacked state has the
greatest chain entropy. Terminal stacking of unpaired
bases adjacent to helices could be treated in an analo-
gous manner, but the magnitude of the effect is much
smaller because it relates primarily to the shorter length
scale; consequently we did not incorporate this at this
stage.

C. Simulations

We also compute the probability of loop formation by
performing FJC2 simulations. The parameters of the
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FIG. 2: In simulations, the backbone is represented as hard
core beads of radius r = 2.4 Å. For single-stranded links the
separation is a = 6.2 Å. For helix-crossing links the separation
is b = 15 Å, with (hatched) intermediate beads to provide self-
avoidance. A hairpin loop (M = 1 helical lengths) with three
bases (N = 4 single-strand links) is depicted.

simulations, a = 6.2 Å and b = 15 Å, come from ana-
lyzing the 4′ carbon coordinates [1] of PDB files. To en-
force self-avoidance we use hard-core beads with radius
r = 2.4 Å, consistent with our observation that adjacent
C4′ to C4′ unit vectors satisfy n̂i · n̂i+1 > −0.7 and with
Turner’s requirement of at least three bases (N ≥ 4 seg-
ments) for a hairpin loop. Helix lengths contain interior
beads, see Figure 2. At least one single-stranded link
always separates helices (see Figure 1), so consecutive
steps of length b are prohibited. Loops with N < 3 at
M = 0, or N < 4 at M = 1, or N < M are all disallowed
geometrically.

We compute the loop probability ploop(N, M), in sim-
ulations with 108 chains. After M steps of length b and
(N − 1) steps of length a, chosen at random, we measure
the probability density of end separation in 0.1 Å bins,
using the average bin density around end-to-end separa-
tion a. The Boltzmann formula,

Gsim(N, M) = −kT ln ploop(N, M), (4)

again converts probability to free energy.

III. RESULTS AND DISCUSSION

A. Multibranch loops

We begin with the interesting case of multibranch loops
with N single-stranded segments (or n = N −M bases)
and M > 2 stems. Our polymer-physics based formula
Eq. (2) correlates beautifully with simulations for a range
of N, M values, see Figure 3(c).

The mfold approach to multibranch loops is rather
arbitrary and peculiar. In the initial mfold run, a linear
function is used,

Gaffine = (3.4 + 0n + 0.4M) kcal/mol. (5)

mfold uses Eq. (5) to generate a set of optimal and
suboptimal folds.
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FIG. 3: As a function of Gsim, for N ≤ 20 and M ≤ 6, we
plot: (a) the mfold initial run [Eq. (5)], (b) the reevaluated
free energies of mfold’s efn2 [Eq. (6)], (c) our GFJC2 for-
mula [Eq. (2)], and (d) the best linear fit to simulation data
Glinear = (4.3+0.07N+0.2M) kcal/mol. It is clear that GFJC2

best approximates Gsim, demonstrating that FJC2 captures
the correct polymer physics lacking in the mfold formulas.
The quality of the agreement allows us to incorporate hair-
pin loops on the same footing as multibranch loops and to
consider coaxial stacking as a change in the effective M .

mfold then recomputes the free energies of the set of
folds using the efn2 function:

Gefn2(n ≤ 6) = (10.1− 0.3n− 0.3M) kcal/mol,
Gefn2(n ≥ 6) = (8.3− 0.3M) kcal/mol

+ 1.75kT ln(n/6).
(6)

For the multibranch free energy, mfold reports the efn2
value from Eq. (6), along with any free energy changes
due to terminal mismatches or dangling bases.

It is clear from Figure 3 that our multibranch formula
is in excellent agreement with simulations, while both
mfold approaches are poorly correlated. The standard
error per data point is: s = 0.08 kcal/mol for GFJC2,
s = 0.28 kcal/mol for Glinear, s = 0.37 kcal/mol for
Gaffine, and s = 0.80 kcal/mol for Gefn2. Incidentally,
Zhang et al. [27] and Cao and Chen [7] use extrapolation
formulas with multiple adjustable constants for each M .
In our formula, the disparity of a and b lengths elegantly
explains why chains with larger M have higher free en-
ergy and lower apparent slope with respect to changes in
N .

Because our polymer theory uses exponents derived
for the long chain limit while these are relatively short
chains, some systematic errors are observed. Altering
the exponents could improve agreement slightly, but with
errors already reduced to the same 0.1 kcal/mol range
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as base-pair stacking parameters, we prefer to avoid in-
troducing additional fitting parameters for marginal im-
provement.

It is also not surprising that GFJC2 deviates the most
from Gsim for very short hairpins (M = 1 and N = 4, 5),
as self-avoidance greatly stretches these loops. Correc-
tions to the free energies of stretched chains can be in-
troduced [18], but to avoid complication we simply use
GFJC2 rather than including corrections for the observed
differences between Gsim and GFJC2. Andronescu et al.
[6] have achieved improvements in prediction accuracy
simply by re-parametrizing the Turner model.

Mathews and Turner [22] proposed (9.3 − 0.9M +
0n) kcal/mol on the basis of a set of experiments on
M = 3, 4 multibranch loops. They indicated that their
observation that M = 4 loops are more stable than
M = 3 loops might arise from whether M is even or
odd; in our framework, this can be explained as stacked
helices reducing an M = 4 effective loop size to Meff = 0
but M = 3 only to Meff = 1. In the limit of large M ,
the negative slope with respect to M is unphysical be-
cause longer chains have more configurations and are thus
less likely to form loops. The Mathews and Turner [22]
formula produces a standard error of s = 2.2 kcal/mol
against Gsim. An additional term related to the asym-
metry of loops was also proposed in Mathews and Turner
[22]; however, the functional form of this term has pro-
hibited implementation in folding algorithms. Asymme-
try is likely a proxy for the possibility of helix stacking
discussed above.

B. Hairpin loops

Hairpin loops contain M = 1 helices and N single-
stranded segments (or n = N − 1 bases). We find that
our polymer theory is also consistent with the Turner
values [21]. In Figure 4, our M = 1 theory and simula-
tion results are compared with experiment [21]. Turner
quotes values for each n, while we believe fitting all the
data to a model context is preferable, especially when
extrapolating to long loops. The smoothness of mfold’s
“experimental” curve for n > 9 is misleading as it is a
Jacobson-Stockmayer extrapolation [15], while the actual
experiments are for 3 ≤ n ≤ 9. Our smooth theory and
simulation curves generally fall within the large error bars
of Turner.

C. Testing GFJC2 with mfold

We test the performance of mfold with its hairpin
(M = 1) and multibranch (M > 2) loop free energies re-
placed by GFJC2. The interior or bulge loop (M = 2) free
energies were not altered because sequence dependences
for mismatched bases have been tabulated. For hairpins,
the first mismatch and the sequence-specific tetraloop
and triloop free energies were also retained. The val-

ues of C for the multibranch and hairpin forms of GFJC2

are set to 0.0 kcal/mol and −1.1 kcal/mol respectively;
these values ensure that GFJC2 hairpin and multibranch
free-energies are similar to their efn2 counterparts. This
similarity is important for the maintenance of relative
free-energy levels among the different secondary struc-
ture motifs and prevents systematic biasing towards cer-
tain types of motifs.

No mfold default settings were changed except for the
percent-suboptimality parameter, which was increased
from P = 5 to P = 30 to generate a set of subopti-
mal folds within 30 percent of the minimum free en-
ergy. (For the relatively short hammerhead ribozyme
sequences, P = 100). This set of optimal and suboptimal
folds, based on Eq (5), is rank ordered by free energy.
The free energies for these mfold affine structures are
recomputed with efn2, Eq (6). We do the same with
our GFJC2 formula Eq (2). This procedure facilitates the
most direct comparison of results. Because recomputing
with efn2 or GFJC2 does not predict any new structures,
changes in the accuracy are manifested as changes in the
rank ordering of predicted folds.

We first tested using 569 tRNA sequences, previously
used in a study by Gutell et al [11]. This set of sequences
represents a diverse collection of tRNAs corresponding to
different amino acids in a wide variety of organisms. The
Gutell group also makes available comparatively deter-
mined structure information for every sequence. Mod-
ified bases are represented as N and, as such, are not
allowed to pair.

Each structure from the mfold list is compared to
Gutell’s “correct” structure. The “most accurate” struc-
ture is the one with the most correct base pairs; but
while this structure is the same for GFJC2, affine, and
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FIG. 4: The free energies of hairpin loops as a function of
the number of bases is given for mfold /Turner rules [21], for
Monte Carlo simulations Eq. (4), and our theoretical expres-
sion Eq. (2) with C = −0.8 kcal/mol. Note that mfold values
for n > 9 are inferred from Jacobson-Stockmayer theory us-
ing n = 9 as a reference point even though the data is not
smooth for n < 9. The experimental errors for loop energies
are much larger than the ±0.1 kcal/mol for base pairs.
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MFE = most accurate Size of Diff. of Props.
RNA Class GFJC2 efn2 affine Dataset pFJC2 − pefn2

tRNA 245 203 178 569 7.4% ± 5.7%
5S 220 221 205 309 −0.3% ± 7.1%

SRP 209 217 202 369 −2.2% ± 7.1%
hammerhead 52 49 52 66 4.6% ± 14.4%

cis-reg 14 14 15 41 0.0% ± 20.5%

Net 740 704 652 1354 2.6% ± 3.8%

TABLE I: The number of times the “most accurate” struc-
ture is predicted to have the minimum free energy (MFE)
is compared between the models for five RNA classes. The
difference in proportions pFJC2 − pefn2 with 95% confidence
intervals [3] is also reported. Although only the tRNA class
shows statistically significant gain, we note a net increase in
performance overall.

efn2, its rank among the list may change as the rela-
tive energies of the folds change. The number of “most
accurate” structures at the optimal position shows a sta-
tistically significant increase from 203 with efn2 to 245
with GFJC2 (see Table 1).

We further tested on a large set of 5S ribosomal RNA
sequences used in a previous evaluation of mfold [21], a
set of SRP RNA from the SRP database [4], and hammer-
head ribozyme and cis-regulatory RNA elements from
the Rfam database [12]. The SRP, hammerhead and cis-
regulatory sequences were obtained via the RNA strand
website [5]. Performance of GFJC2, measured by the per-
centage of times the “most accurate” structure for each
sequence appears with the lowest free energy, remains
similar to that of mfold for these classes (see Table 1).

IV. CONCLUSIONS

Our major conclusions are these: (1) RNA loops are
built from two different lengths, so we introduce the FJC2
model. We encourage others to respect the a/b ratio in
drawing two dimensional representations. (2) The free

energy of RNA loops can be derived from polymer physics
principles (Eq 2). The ten parameters for hairpins and
multibranch loops in Turner model reduce to only two
adjustable constants in our model. (3) GFJC2(N, M) is
in good agreement with experiment and simulation (see
Figures 3 and 4), while the mfold formulations for multi-
branch loops are poor. (4) Helix stacking lowers the en-
thalpy as expected, but surprisingly also increases the
likelihood of loop formation because there are relatively
more loop configurations for shorter effective chains. We
suspect that the previously reported effect of asymme-
try within loops [22, 27] can be understood better in
terms of the entropic benefit of coaxial stacking. (5) We
have shown that FJC2 produces a statistically signifi-
cant increase in the accuracy of tRNA predictions, while
performing on par with mfold for other RNA classes
(see Table 1). (6) Our improved loop free energy func-
tion can readily be calculated if the secondary structure
is known. A linear approximation of our formula as in
Figure 3(d), along with an Meff correction, can be in-
corporated in all of the RNA folding algorithms based
on the Turner model. (7) We feel that the FJC2 for-
malism is a good springboard for including stacking of
single-stranded bases [2] in the future.
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