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There are many effective ways to represent a minimum free energy RNA secondary structure
that make it easy to locate its helices and loops. It is a greater challenge to visualize the thermal
average probabilities of all folds in a partition function sum; dot plot representations are often puz-
zling. Therefore, we introduce the RNABOWS visualization tool for RNA base pair probabilities.
RN ABOWS represent base pair probabilities with line thickness and shading, yielding intuitive dia-
grams. RNABOWS aid in disentangling incompatible structures, allow comparisons between clusters
of folds, highlight differences between wild type and mutant folds, and are also rather beautiful.

I. INTRODUCTION

Graphical representations can profoundly influence our
conception of physical reality or interpretation of data.
For example, in conventional representations of RNA sec-
ondary structure the stems (regions of stacked base pairs)
and loops (gaps between) are easily identified; however,
showing only one set of base pairs makes invisible the
prevalence of thermal fluctuations. In fact, the likelihood
of being in even the most probable structure is exceed-
ingly small and thermal fluctuations allow the molecule
to explore many states. To characterize RNA structures
in thermal equilibrium, better visualization methods are
needed.

Much work has gone into developing computational
methods to predict the secondary structure from the se-
quence, including: minimizing free energy [1-3], com-
puting the partition function [2-6], stochastically sam-
pling the partition function [7], enumerating states [8],
kinetic approaches [9, 10], maximum-expected accuracy
approaches [11, 12], comparative analysis [13, 14], and
statistical methods [15-17]. The accuracy of predictions
has received scrutiny [18-21]. Our particular interest is to
visualize ensembles of structural states in thermal equi-
librium as predicted by partition-function based meth-
ods.

A number of tools have also been developed to visual-
ize RNA secondary structures. The minimum free energy
(MFE) or other secondary structures can be depicted in
two-dimensional “airport terminal” diagrams, in which
the backbone defines the perimeter and lines or dots be-
tween bases denote the pairs, as in Figure 1(a). A classic
“rainbow” diagram, see Figure 1(b), encodes the same
information but instead of the backbone sequence form-
ing the perimeter, it is stretched horizontally with the
base pairs making long arcs. In circle diagrams [22], the
backbone is arranged in a circle with arcs again marking
the pairs. Most compact is bracket notation [6], see Fig-
ure 1(c), in which unpaired bases are periods and match-
ing parentheses indicate paired bases. To represent non-
nested pseudoknot structures, bracket notation requires
additional delimiters, like [ ] or { }.

Partition-function based computational methods pre-

dict the thermal average probabilities P;; of RNA base
pairs rather than one single structure. The P;; informa-
tion is often represented in dot plots — a grid is made
and the size or color of the dot at (i, j) indicates the prob-
ability of pairing base ¢ with base j, as in Figure 1(d,f).
Dots along diagonals indicate stems.

Because the eye naturally groups similar objects to-
gether [23], the dot plot representation in Figure 1(d)
subliminally suggests that each color represents a unique
structure. But closer examination reveals, for example,
that base 41 along the horizontal axis forms red pairs
with bases 4, 9, 13, and 35 along the vertical axis. So
if there is not a single red structure, can one figure out
which dots are consistent?

The Figure 1(e) hybrid approach adds to the MFE
structure a color coding of the bases according to their
probability of pairing [24]. This approach may leave the
impression of a single static structure in which the pre-
dictions vary in certainty, rather than of a fluctuating
molecule exploring many states and many local minima.

II. RESULTS

We introduce RNABOW diagrams as a more intuitive
way to visualize RNA structures in thermal equilibrium.
RNABOWS are the partition function analog of rainbow
diagrams. In RNABOwW diagrams, we use the line thick-
ness and shade of the arcs to represent the probability
of a base pair. The single AllPairs RNABow displays
the entire partition function. In Figure 1(g) it is sim-
ple to see the two local minima structures because the
eye naturally groups parallel lines. With RNABOwWS our
perceptual inclinations help us, rather than hinder us.

To facilitate comparisons at a glance we introduce the
difference RNABOwW diagram, such as Figures 1(h), 2,
and 3. Two folds, top and bottom, are juxtaposed.
Color highlights the differences between folds. When
Pithp > P}}Ot, the top arc’s color is set proportional to the
relative probability excess X it;)p = (P;jOp - PZ-?-Ot), other-

wise Xf;p = 0. We then either use the (hue, saturation,
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FIG. 1: Depictions secondary structures for the L. collosoma Spliced Leader sequence: (a) two-dimensional “airport terminal”
diagram of the Minimum Free Energy (MFE) state, (b) classic “rainbow” diagram (MFE), (c) bracket notation with periods
representing unpaired bases and parentheses indicating paired bases (MFE). (d) A dot plot with partition function probabilities
P;; with base i vertical and base j horizontal. Color is assigned on the basis of the logs of probabilities. [Graphics adapted from
RNASTRUCTURE.] (e) ViennaRNA'’s prediction (using slightly different free energy rules) with bases color coded according to
their partition function probabilities. [Graphics adapted from VIENNARNA.] (f) A Dot Plot available from ViennaRNA uses

box size proportional to probability (upper triangle), but the grid obscures low probability pairs.

(g) An AllPairs RNABOW

diagram with the line width and darkness proportional to the probability of the base pairs. (h) A Clusters RNABOw diagram
after resolving into the two dominant clusters, with probability 0.57 (red) and 0.43 (blue); Note that the MFE state [Fig. 1(b)]

belongs to the less probable blue cluster.

value) or RGB color models, with

(H,S,V) = (red, X;?P, X" — P[*" 4 1),
(R,G,B) = (2355 X" [P, 0, 0),

for pair (4,j) on the top. Formulas for bottom arcs are
analogous. Pairs with similar weight are colored black,
extra weight drives top pairs toward red and bottom pairs
toward blue.

In Figure 1(g) we see two dominant structural classes
in the total partition function. To visualize each local
minima we first have to partition the partition function;
we use our PF method, which is described fully in the
Supplemental Information. The idea is to identify the
base pair (i,j) which is most incompatible with other
base pairs. We then split the partition function into two,
one with the (4, ) pair Prohibited and one with the (i, j)
pair Forced to exist. The resulting P and F' clusters



Wild Type

FIG. 2: The partition functions of Wild Type (red) and the U22G mutant (blue) the 5'UTR of ferritin light chain mRNA are
depicted. The colors are set proportional to the difference between the clusters such that common elements are black, while the
distinct elements are either red or blue. The dramatic effect of this single nucleotide polymorphism on the secondary structure
is evident. Other base changes within loop regions have less influence.

describe two local free energy minima, including fluctua-
tions. These are visualized with a Clusters RNABOW in
Figure 1(h).

In the more probable red cluster of Figure 1(h), one
can see the thermal equilibrium between states in which
Gg31 pairs to either Uys or Uy7. And one can also see a
possible UAAA/UUUG hairpin duplex early in the se-
quence which has no topological barrier with the later
strong hairpin; it is formed only about one-quarter of
the time in this cluster.

In the blue cluster of Figure 1(h), one sees gradations
in the stability of the hairpin’s stem which are not seen in
the MFE structure [Figure 1(b)] because the MFE bonds
either exist or not. Notice also that the MFE structure
is one of the states in the less probable of the clusters.

If desired, the PF procedure could be repeated again
on each cluster to further disentangle structures. Notice
also in Figure 1(h) that the maximum probabilities P;;
within each daughter cluster approach 1 while the most
probable pair in the parent cluster was 0.57, roughly the
weight pp. It is easy to imagine applications to visualiz-
ing riboswitches which exhibit a conformational change
between two folds.

In Figure 2, we present a Difference RN ABOW compar-
ison of the 5 UTR of Ferritin Light Chain wild type to
the U22G mutant [25] associated with Hyperferritinemia
cataract syndrome. This single nucleotide polymorphism
dramatically changes the folding pattern. In particular,
the loss of the Iron Response Element, the brightest red
hairpin in Figure 2, disrupts binding by an iron-response



protein.

In Figure 3 we present a Difference RNABOW which
shows how information about which bases are unpaired
obtained from chemical mapping experiments can be in-
corporated in partition function calculations.

with chemical mapping data

FIG. 3: Chemical mapping experiments indicate which bases
are unpaired, and this information can also be visualized
with Difference RNABows. Here, for the 5-UTR region of
HIV-1, we compare the constrained [26] partition function
where lower-case bases are forced to be unpaired (top, red)
with the unconstrained partition function (bottom, blue).

III. ACCESS

From http://rna.williams.edu/ users can create
their own RNABOwWS with a choice of UNAFOLD,
VIENNARNA, or RNASTRUCTURE [2, 3, 5] to compute
the partition functions. Three RNABOWS tools are avail-
able:

AllPairs to visualize the entire partition function [Fig-
ure 1(g)] with base pairs denoted by arcs whose
width and shading is proportional to the probabil-
ity of the pair,

Clusters to split that partition function into two clus-
ters [Figure 1(h)] using the PF method described
in Supplemental Information, and

Difference RN Abows to highlight the differences be-
tween the partition functions of two sequences [Fig-
ures 1(h), 2, 3].

The RNABOW graphics are rendered in EPS, PDF, or
SVG formats for easy import into other applications. All
graphics are vector based, so there is no image degrada-
tion at any scale.

Advanced users can also import P;; data they have
pre-computed using other algorithms. Source code for
RNABOWS is also available by request for incorporation
into other applications.

IV. CONCLUSION

Visualization tools can offer insights into problems be-
yond mere representation of data. With RNABowsS, a
partition function’s base pair probability information be-
comes easier to use and more powerful. Our instinctive
pattern-matching ability allows us to quickly compare
clusters of structures. Incompatible clusters can be dis-
entangled by eye, or by the PF procedure described.

The basic RNABOWS tools are extensible to represent
any data set with varying coupling strengths and then to
highlight differences between conditions. The difference
RNABOW juxtaposes arcs and highlights differences with
color. The recent R-CHIE package [27] also uses double
arcs to visualize helices predicted from multiple align-
ments with the TRANSAT program [14]. Making side-by-
side comparisons of multiple folds is less straightforward
with dot plots.

Furthermore, the mental misconceptions that come
from looking at a static MFE, PDB, or consensus struc-
ture — forgetting that thermal fluctuations open and
close pairs, or forgetting that not all pairs are equally
stable — are challenged subliminally by the gradations
of the shadings in RNABOW pairs.
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Supplemental Information

Here we will describe our approach to disentangle in-
compatible secondary structures, resulting in two clusters
of compatible structures, as seen in Figure 1(h).

Most folding algorithms [1-6] use the set of nested
structures to build their partition functions. In the par-
tition function, it is possible to have two probable pairs
P;; and Py; which are non-nested, see Figure 1(g), but
non-nested pairs do not co-occur in any of the individual
states in the partition function sum.

Non-nestedness of pairs is therefore a hallmark of the
incompatibility of the structures.

In our simple and iterative PF clustering method, we
sum over non-nested (k, ) pairs to find the (¢, ) pair that
produces the biggest non-nestedness score,

Vij = Py Zk<i<l<j P + Py Zi<k<j<l P (1)

Once the maximum ;; has been identified, we then per-
form a new partition function computation with bases
(i,4) forced to pair to create the Forced F' cluster.

The F' cluster is the portion of the original partition
function that contains the (7, j) pair. The F cluster’s free
energy

Gr=—-RT logZeGs,
sEF

and base pair probabilities Pf; are output. The fraction
of the original partition function is

pr = exp{—(Gr — Go) KT},

where Gy is the original free energy. The original parti-
tion function minus the forced partition function leaves
all states in which the (7,7) pair is prohibited, the P
cluster. The values for the prohibited cluster P can be
obtained from the conservation of probability:

pp =DPo — PF
and

I

ppP =poP — prPf,

or by computing the partition function with a prohibit
(4,4) constraint.

Tt is clear from Figure 1(h) that the effect that forcing
even one base pair can have in dividing the ensemble of
structures is remarkable.

Our PF procedure can also be repeated on any previ-
ously defined cluster as well at the root; each time sepa-
rating further incompatibilities. The overall run time is
O(KN3), where K is the number of clusters. [The sums
of Eq. (1) appear to require O(N*) operations if one sums
over the indices; however, by iterating over a list of the
O(N) base pairs which exceed a probability threshold,
P;; > 6 ~ 1075, Eq. (1) requires only O(N?) operations.]
A detailed description of our related NESTOR algorithm,
which instead creates clusters from stochastically sam-
pled states, is also forthcoming.



